Homework \#10 (10 points) - Show all work on the following problems:

Problem 1 (3 points): Calculate the magnetic field at the center of a uniformly charged spherical shell of radius R, carrying total charge Q, and spinning around the z -axis with a uniform angular velocity ω. Hint: Start with the solution derived for the magnetic field above/below the center of a circular loop of current.

Problem 2 (2 points): Consider a large parallel-plate capacitor with uniform charge density σ on the top plate, and $-\sigma$ on the bottom plate, moving with a constant speed v tangential to the surface of the plates.

2a (1 point): Find the magnetic field between the plates and above and below them.
2b (1 point): Find the magnitude and direction of the magnetic force per unit area on the upper plate (caused by the bottom plate).

Problem 3 (3 points): Consider a finite segment of wire aligned with the z-axis, extending from point z_{1} to z_{2}, and carrying a current I.

3a (1.5 points): Find the magnetic vector potential at a radial distance s from the origin.

3b (1.5 points): Show that the curl of this magnetic vector potential gives the same magnetic field as derived in Ex. 5.5.

Problem 4 (2 points): Find the magnetic vector potential above and below an infinite plane (in the $x-y$ plane) with a surface current density K flowing in the x direction.

